<u>YEAR III</u> SEMESTER - V

College of Biomedical Engineering & Applied Sciences *Microsyllabus*

NUMERICAL METHODS BEG 389 CO

Seme	Semester V									Year III
Teaching Schedule		Examination Schedule					Тс	н		
			Final		Internal Assessment		otal M	Rema		
		Th	eory	Practical		Theory Marks	Practical Marks	arks	rks	
L	Т	Р	Duration	Marks	Duration	Marks				
3	1	2	3	80			20	50	150	

Course Objectives: To solve the engineering problems by using the theory of numerical computational procedures.

Unit 1: Introduction

- 1.1 Introduction to numerical method
- 1.2 Needs of numerical method
- 1.3 Characteristics of numerical computing
- 1.4 Approximations and errors in computing
 - 1.4.1 Significant digits
 - 1.4.2 Errors
 - 1.4.2.1 Absolute and Relative errors
 - 1.4.2.2 Round off errors
 - 1.4.2.3 Truncation errors
 - 1.4.2.4 General error formula
 - 1.4.3 Convergence of iterative processes
 - 1.4.4 Minimizing the total error

Unit 2: Solution of Nonlinear Equations

- 2.1 Introduction
- 2.2 Methods of solution
 - 2.2.1 Direct analytical methods
 - > Introduction
 - 2.2.2 Graphical methods
 - > Introduction
 - 2.2.3 Trial and error methods
 - Introduction
 - 2.2.4 Iterative methods
 - Introduction
- 2.3 Iterative methods
 - 2.3.1 Starting and Stopping an iterative method
 - 2.3.2 Bisection method
 - 2.3.2.1 Introduction
 - 2.3.2.2 Algorithm
 - 2.3.2.3 Derivation
 - 2.3.2.4 Problems
 - 2.3.2.5 Programming
 - 2.3.3 Newton Raphson method
 - 2.3.3.1 Introduction
 - 2.3.3.2 Algorithm

(2 hrs)

(8 hrs)

2.3.3.3 Derivation	
2.3.3.4 Problems	
2.3.3.5 Programming	
2.3.4 Secant method	
2.3.4.1 Introduction	
2.3.4.2 Algorithm	
2.3.4.3 Derivation	
2.3.4.4 Problems	
2.3.4.5 Programming	
2.3.5 Fixed point iteration	
2.3.5.1 Introduction	
2.3.5.2 Algorithm	
2.3.5.3 Derivation	
2.3.5.4 Problems	
2.3.5.5 Programming	
2.3.6 False position method	
2.3.3.1 Introduction	
2.3.3.2 Algorithm	
2.3.3.3 Derivation	
2 3 3 4 Problems	
2 3 3 5 Programming	
Unit 3. Curve Fitting: Internelation and Degression (10 h	rc)
2.1 Introduction (10 II	115)
2.2 Delynomial forms	
3.2 Polynomial forms	
3.5 Methods of interpolation	
3.3.1 Linear interpolation	
3.3.1.1 Introduction	
3.3.1.2 Derivation	
3.3.1.3 Problem	
3.3.1.3 Programming	
3.3.2 Lagrange interpolation polynomial	
3.3.2.1 Introduction	
3.3.2.2 Derivation	
3.3.2.3 Problem	
3.3.2.4 Programming	
3.3.3 Newton's divided difference interpolation for non-equidistant data points	
3.3.3.1 Introduction	
3.3.3.2 Problem	
3.3.4 Newton-Gregory forward and backward interpolation	
3.3.4.1 Introduction	
3.3.4.2 Problem	
3.3.5 Spline interpolation	
3.3.3.1 Introduction	
3.3.3.2 Problem	
3.4 Least squares method of fitting continuous and discrete data or functions	
3.4.1 Fitting linear equations	
3.4.1.1 Introduction	
3.4.1.2 Derivation	
3.4.1.3 Problem	
3.4.2 Fitting transcendental equations	
3.4.2.1 Introduction	
3.4.2.2 Derivation of the form $y=ax^b$, $y=ae^{bx}$	
3.4.2.3 Problem	
3.4.3 Fitting polynomial equations	

- 3.4.1.1 Introduction
- 3.4.1.2 Derivation
- 3.4.1.3 Problem
- 3.4.4 Programming

Unit 4: Numerical Differentiation and Integration

- 4.1 Introduction
- 4.2 Numerical differentiation
 - 4.2.1 Differentiating Continuous Function
 - 4.2.1.1 Forward Difference Quotient
 - 4.2.1.2 Backward Difference Quotient
 - 4.2.1.3 Central Difference Quotient
 - 4.2.1.4 Comparison of Errors
 - 4.2.1.5 Higher-Order Derivatives
 - 4.2.2 Differentiating Tabulated Function
 - 4.2.2.1 Two-point Forward Difference Quotient
 - 4.2.2.2 Three-point Forward Difference Quotient
 - 4.2.2.3 Three-point Backward Difference Quotient
 - 4.2.2.4 Three-point Central Difference Quotient
 - 4.2.2.5 Error Analysis
 - 4.2.2.6 Higher-Order Derivatives
- 4.3 Numerical integration
 - 4.3.1 Introduction
 - 4.3.2 Trapezoidal Rule
 - 4.3.3 Composite Trapezoidal Rule
 - 4.3.4 Simpson's 1/3 Rule
 - 4.3.5 Composite Simpson's 1/3 Rule
 - 4.3.6 Simpson's 3/8 Rule
 - 4.3.7 Higher Order Rules
 - 4.3.7.1 Introduction
 - 4.3.7.2 Boole's Rule
 - 4.3.8 Problems
 - 4.3.9 Programming
- 4.4 Numerical double integration
 - 4.4.1 Introduction
 - 4.4.2 Problem

Unit 5: Matrices and Linear Systems of Equations

- 5.1 Introduction
- 5.2 Solution of linear systems-direct methods
 - 5.2.1 Gauss elimination method (Basic)
 - 5.2.1.1 Introduction
 - 5.2.1.2 Algorithm
 - 5.2.1.3 Problem
 - 5.2.2 Gauss elimination method with pivoting
 - 5.2.2.1 Introduction
 - 5.2.2.2 Algorithm
 - 5.2.2.3 Problem
 - 5.2.3 Gauss-Jordan method
 - 5.2.3.1 Introduction
 - 5.2.3.2 Algorithm
 - 5.2.3.3 Problem
 - 5.2.4 LU decomposition method
 - 5.2.4.1 Introduction
 - 5.2.4.2 Algorithm
 - 5.2.4.3 Problem

(10 hrs)

(5 hrs)

5.2.5 Programming

- 5.3 Solution of linear systems-interactive methods
 - 5.3.1 Jacobi iteration method
 - 5.3.1.1 Introduction
 - 5.3.1.2 Algorithm
 - 5.3.1.3 Problem
 - 5.3.1.4 Programming
 - 5.3.2 Gauss-Seidel method
 - 5.3.2.1 Introduction
 - 5.3.2.2 Algorithm
 - 5.3.2.3 Problem
 - 5.3.2.4 Programming
- 5.4 The Eigen value problems
 - 5.4.1 Introduction
 - 5.4.2 Problem

Unit 6: Numerical Solution of Ordinary Differential Equations (7 hrs)

- 6.1 Introduction
- 6.2 Euler's method for solving ordinary differential equations of 1st order
- 6.3 Heun's Method
- 6.4 Fourth Order Runge-Kutta Method
- 6.5 Prediction-Corrector methods
 - 6.5.1 Introduction
 - 6.5.2 Milne-Simpson Method
 - 6.5.3 Adams-Bashforth-Moulton Method
- 6.6 Simultaneous and higher order equations
- 6.7 Initial value problem
- 6.8 Boundary value problems
- 6.9 Programming

Unit 7: Numerical Solution of Partial Differential Equations (3 hrs)

- 7.1 Introduction
- 7.2 Finite-difference approximates to derivatives
- 7.3 Laplace's equation
- 7.4 Parabolic equation
- 7.5 Hyperbolic equation
- 7.6 Iterative methods for the solution of equations

Chapters	Lectures (in hours)	Marks
Unit 1: Introduction	2	0-5
Unit 2: Solution of Nonlinear Equations	8	10
Unit 3: Curve Fitting: Interpolation and Regression	10	10
Unit 4: Numerical Differentiation and Integration	5	10
Unit 5: Matrices and Linear Systems of Equations	10	10
Unit 6: Numerical Solution of Ordinary Differential Equations	7	10
Unit 7: Numerical Solution of Partial Differential Equations	3	10
Programming in C (Includes flow chart and algorithm)	-	15-20
Total	45	80

BIOMEDICAL EMBEDDED SYSTEM DESIGN BEG 3C2 BM

Semester V						Ye	ar III			
Teaching Schedule Hours/Week		Examination Schedule						Ţ	_	
		Final Internal Assessment			ssessment	otal	Ren			
			Theory	y Practica		Theory Marks	Practical Marks	Marks	narks	
L	Т	Р	Duration	Marks	Duration	Marks				
3	1	2	3	80			20	25	125	

SN	Chapters	Descriptions	Time, hrs	Hours	Weight
1	Unit 1. Background	Introduction to Embedded System	0.5	3	4
		Introduction to Real Time System	1		
		• Feature of Real Time			
		System		_	
		Architecture and design of an	0.5		
		Embedded System			
		Example of Embedded system	1		
2	Unit 2. Hardware	Terminology	0.5	3	4
	Fundamentals	• PCB			
		 schematic diagrams 			
		• VCC			
		• Ground			
		Gates and its implementation in	0.5		
		Practical consideration			
		• Review of Gates(
		AND,OR,NOT,			
		NAND,NOR)		_	
		Other Basic Consideration	1		
		 Power and Decoupling 			
		 decoupling capacitor 			
		Open Collector			
		Tri-Stating Outputs			
		Floating Signals			
		 Pull up Resistor 			
		 Pull Down Resistor 			
		Memory	1		
		ROM Design			
		• SRAM Definition with			
		circuit diagram			
		• DRAM definition with			
		circuit diagram			
3	Unit 3Advanced	Microprocessors	0.5	5	8
	Hardware Fundamentals	Introduction			
		Buses	1		
		Introduction			
		Bus Handshaking			
		No Handshaking			
		• Wait state			
		DMA	1.5]	
		Architecture of System			
		with DMA			

		Read Operation with			
		timing Diagram			
		Write Operation with			
		timing Diagram			
		Interrupts	1		
		Interrupts Connection			
		Operation			
		Timer	1		
		• Watch dog Timer			
		• Timer in watch mode			
		• Timer in Counter mode			
4	Unit 4:Assembly	Basic Concepts of MASM and	0.5	6	Only
	Language Programming	NASM			used for
		Optimization	2		Practical
		Construction of Graphics Routine	2		
		Device Driver Concepts	1		
		Examples			
		Recent Software Tools for ALP	0.5		
5	Unit 5. Microcontroller	Introduction	1	6	16
		Architecture of Microcontroller			
		AT89c51/52/55 Architecture			
		• Pin Diagram			
		• Function of Pin			
		8255 PPI	1		
		Block Diagram			
		• Interfacing with			
		Microcontroller			
		• Modes of operation			
		Example			
		Microcontroller Based Medical	4	-	
		Instruments	-		
		• Block Diagram and			
		function of Medical Meter			
		Blood Pressure Monitor			
		End Scope			
		Infusion pump			
6	Unit 6 Embedded	Cross Assemblers	0.5	2	Only
Ŭ	software Development	Cross Compilers	0.5		used for
	Tools	Debuggers	0.5	-	Practical
		Downloader	0.5		
7	Unit 7. System design	Design and build a bioelectric	3	10	24
	with microcontrollers	amplifier	C	10	
		Block Diagram			
		Operation			
		Pulse Oximeters	3.5		
		Block Diagram	5.5		
		Function			
		Doppler Ultrasound	35	1	
		Block Diagram and Design	5.5		
		Consideration			
8	Unit 8 Emerging	VISI	1	10	24
	concept	Introduction	I I		<i>2</i> 1
1	· · · · · · · · · · · · · · · · · · ·			1	

	Building blocks of VLSI			
	system on chip			
	VLSI application in machine	1		
	VLSI sensors for biomedical	1		
	signals			
	• Block diagram of a generic			
	VLSI sensor			
	Operation			
	VLSI design with VHDL/Verilog	7		
	• PLD Design Flow Steps			
	• Design Entry			
	• State Diagram			
	• HDL Code Entry			
	Compilation			
	• Functional Simulation/			
	Verification			
	• Synthesis			
	Implementation			
	• Features of VHDL			
	• Examples			
	• Adder			
	Subtractor			
	• Decoder			
	• Encoder			
	Counter			
		Total	45	80

Laboratory:

- 1. Interfacing standard Parallel and serial port
- 2. Real life Projects with Microcontrollers
 - a. Simple Flashing LED
 - b. Flashing LED with Push Buttons
 - c. Seven Segment Display Interfacing
 - d. Keypad Interfacing
 - e. Keypad with Seven Segment Display
 - f. Stepper Motor Control
- 3. LCD Display using Microcontroller Programming
 - a. Introduction to LCD and its Programming Protocols
 - b. LCD with Microcontroller
 - c. LCD programming with Keypad
- 4. System Interfacing with Microcontroller
 - a. Serial Data Communication
 - b. Interrupts and Interrupts Service routine
 - c. ADC with Microcontroller
 - d. Activity and Posture recorder
- 5. Interfacing on PIC Microcontroller
- 6. Simple projects on VHDL in FPGA Board

Project:

Students have to prepare one project using FPGA or Microcontroller related to Biomedical instruments.

Text Books:

- 1. Embedded System Primer, Simon
- 2. The 8051 microcontroller Architecture, Programming and Application, Kenneth J. Ayala
- 3. IBM PC Assembly Language and Programming, Peter Abel
- 4. The 8051 Microcontroller and Embedded System, Muhammad Ali Mazidi & Janice Gillispie Mazidi

Reference Books:

1. Biomedical Digital Signal Processing, Willis J. Tompking

Prepared by: Achyuta Nand Mishra